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On coupling the Reynolds-averaged Navier–Stokes equations
with two-equation turbulence model equations
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SUMMARY

Two methods for coupling the Reynolds-averaged Navier–Stokes equations with the q–! turbulence
model equations on structured grid systems have been studied; namely a loosely coupled method and
a strongly coupled method. The loosely coupled method �rst solves the Navier–Stokes equations with
the turbulent viscosity �xed. In a subsequent step, the turbulence model equations are solved with all
�ow quantities �xed. On the other hand, the strongly coupled method solves the Reynolds-averaged
Navier–Stokes equations and the turbulence model equations simultaneously. In this paper, numeri-
cal stabilities of both methods in conjunction with the approximated factorization-alternative direction
implicit method are analysed. The e�ect of the turbulent kinetic energy terms in the governing equations
on the convergence characteristics is also studied. The performance of the two methods is compared
for several two- and three-dimensional problems. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: Reynolds-averaged Navier–Stokes equations; two-equation turbulence model equations;
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1. INTRODUCTION

The so-called density-based methods solve the continuity equation, the momentum equations,
and the energy equation of the Navier–Stokes equations simultaneously. This is desirable
since the Navier–Stokes equations are fully coupled through the convection terms. With the
density-based methods, coupling of the two-equation turbulence model equations with the
Reynolds-averaged Navier–Stokes equations can be done in two ways for the steady turbulent
�ow computations. One is the strongly coupled method [1–4] and the other is the loosely cou-
pled method [5–7]. The former solves the Navier–Stokes equations and the turbulence model
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equations simultaneously. On the other hand, the latter solves the Navier–Stokes equations and
the turbulence model equations in sequence. While the strongly coupled method is preferred
because of possible numerical stability gain with coupling of the Navier–Stokes equations and
the turbulence model equations, the loosely coupled method is preferred because of relative
simplicity in implementing the turbulence model equations into the existing Navier–Stokes
solvers. Despite its signi�cance, however, there seems to be no �rm analytical basis on how
to couple the Reynolds-averaged Navier–Stokes equations and the turbulence model equations.
Kunz and Lakshminarayana [1] studied numerical stabilities of an explicit Navier–Stokes

code with the k–� turbulence model equations. They argued that both coupling methods had
the same linear stability characteristics when the explicit Runge–Kutta time stepping method
was used. They also showed that actual convergence histories of both methods were the same
by comparing the strongly coupled solver and the loosely coupled solver. Lui and Zheng [2]
showed that a strongly coupled method for solving the Navier–Stokes equations and the k–!
turbulence model equations was far better than a loosely coupled method when using a multi-
stage scheme. Residual smoothing and multi-grid method were applied for fast convergence. It
seems that their results are somewhat contradictory to Kunz and Lakshminarayana’s work. In
Lui and Zheng’s work, however, the multi-grid method was not applied to the k–! equations
for the loosely coupled method, while it was applied to both the Navier–Stokes equations
and the k–! equations for the strongly coupled method. This would change the convergence
behaviour of the loosely coupled method completely. Recently, Barakos and Drikakis [3] com-
pared the performance of three di�erent coupling strategies for coupling the Navier–Stokes
equations and the two-equation turbulence models (k–� and k–! models): an implicit coupled
method, an implicit decoupled method and an explicit method. They showed that the implicit
coupled method was superior to other coupling methods. Their implicit decoupled method,
however, utilized the explicit Runge–Kutta time stepping method for the turbulence model
equations and the implicit unfactored scheme for the Navier–Stokes equations, while the im-
plicit coupled method utilized the implicit unfactored scheme for the �ow equations and the
turbulence model equations. Venkateswaran and Merkle [4] asserted that the strongly coupled
method should be used if the turbulent kinetic energy contributions in the state equation and
momentum equation were present, and that there would not be much to be gained by using
the strongly coupled method when the turbulent kinetic energy contributions were ignored.
However their arguments are based on speculations rather than on analysis or actual numerical
experiments.
In 1990, Lee and Dulikravich [8] devised a stability analysis method for their incompress-

ible magneto-hydrodynamic (MHD) solver. They adopted the four-stage Runge–Kutta time
stepping method and the loosely coupled method to solve the incompressible Navier–Stokes
equations and the magnetic transport equations. Their stability analysis starts by constructing
the composite solution vector that is composed of the components of the solution vector of the
Navier–Stokes equations and those of the magnetic �eld vector, and recognizing the loosely
coupled method as a two-step method. The �rst step is to update the solution vector of the
Navier–Stokes equations with the magnetic �eld vector kept constant, while the second step
is to update the magnetic �eld vector with the solution vector of the Navier–Stokes equations
kept constant. They showed that the stability of the loosely coupled method was ensured if
the separate steps were stable.
In this paper, linear stability characteristics of the AF-ADI scheme have been analysed for

both the strongly coupled method and the loosely coupled method for solving the Reynolds-
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COUPLING RANS EQ. WITH TURBULENCE MODELS 167

averaged Navier–Stokes equations and Coakley’s q–! turbulence model equations [9]. The
standard vector stability analysis is made for the strongly coupled system, while Lee and
Dulikravich’s interpretation [8] is used for the stability of the loosely coupled system. Further-
more, the stability characteristics with and without the turbulent kinetic energy contributions in
the state equation and the momentum equations are also studied. Two- and three-dimensional
Navier–Stokes codes using both the strongly coupled method and the loosely coupled method
are developed and applied to several turbulent �ow test cases to validate the stability results.

2. GOVERNING EQUATIONS

The Reynolds-averaged Navier–Stokes equations for compressible �ows in Cartesian tensor
form are given by

�; t + (�uj); j =0

(�ui); t + (�uiuj − �ij); j =0 (1)

e; t + (euj − ui�ij + qj); j =0

where (·); t = @=@t, and (·); j= @=@xj; � is the density, uj is the velocity vector and e is the
total energy. The equation of state for the ideal gas relates the pressure with the total energy

e=
p
�− 1 +

1
2
�uiui + �k (2)

where k is the turbulent kinetic energy and � is the ratio of the speci�c heat. According to
Boussinesq’s eddy-viscosity hypothesis and Fourier’s law, the stress tensor �ij and the heat
�ux vector qj are expressed in terms of the velocity gradient tensor and the temperature
gradient

�ij=�T (ui; j + uj; i − 2
3 �ijuk; k)− (p+ 2

3 �k)�ij; qj= − kTT; j (3)

The total viscosity and the total heat conductivity are de�ned by the sum of the molecular
and turbulent ones

�T =�m + �t; kT = km + kt =Cp

(
�m
Pr
+
�t
Prt

)
(4)

where Pr and Prt are the Prandtl number and the turbulent Prandtl number, respectively, and
Cp is the speci�c heat at constant pressure.
If we de�ne the turbulent pressure as suggested in References [4, 10]

pt =p+ 2
3 �k (5)

then the Navier–Stokes equations and the state equation can be rewritten as

�; t + (�uj); j =0

(�ui); t + (�uiuj + pt�ij − �ij); j =0 (6)
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e; t + {(e+ pt)uj − ui�ij + qj}; j =0

e=
pt
�− 1 +

1
2
�uiui +

3�− 5
3(�− 1) �k or pt =�RT + 2

3 �k (7)

where the viscous stress tensor and the �ux vector are de�ned by

�ij=�T (ui; j + uj; i − 2
3 �ijuk; k); qj= − kTT; j (8)

The subscript in the turbulent pressure will be dropped for convenience.

2.1. Comments on governing equations

Some researchers [6, 7] ignore the turbulent kinetic energy contributions to the total energy,
and the momentum equations. In this case, the Navier–Stokes equations and the state equation
become

�; t + (�uj); j =0

(�ui); t + (�uiuj + p�ij − �ij); j =0 (9)

e; t + {(e+ p)uj − ui�ij + qj}; j =0

e=
p
�− 1 +

1
2
�uiui or p=�RT (10)

Notice that the di�erence between the two systems is in the state equation only. Moreover,
the viscous stress tensor and the �ux vector remain the same. If we de�ne a �ag, � as

�=0 if the turbulent kinetic energy contribution is ignored

�=1 if the turbulent kinetic energy contribution is included

then the combined state equation becomes

e=
p
�− 1 +

1
2
�uiui + �k�C or p=�RT + 2

3 �k� (11)

where C=(3�− 5)=3(�− 1).
One of successful two-equation turbulence models is Coakley’s q–! turbulence model [9].

This model uses the turbulent velocity scale q, and the speci�c dissipation rate or frequency
scale !. They are related to the more conventional turbulence variables, k and �; the turbulent
kinetic energy and its rate of dissipation through the following relations:

q=
√
k; !=

�
k

(12)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:165–197



COUPLING RANS EQ. WITH TURBULENCE MODELS 169

The q–! turbulence model equations can be written in Cartesian tensor notation as

(�q); t + (�uiq− kqq; i); i =Hq
(13)

(�!); t + (�ui!− k!!; i); i =H!

where the di�usion constants for q and ! equations are

k!=�m +
�t
�!
; kq=�m +

�t
�q

(14)

The source terms in Equation (13) are given by

Hq =Cq1

(
C�f

S
!2

− 2D
3!

− 1
)
�!q

(15)

H! =
{
C!1

(
C�
S
!2

− C!3 D!
)

− C!2
}
�!2

where the strain rate invariant S, and the dilatation D, are de�ned by

S = (ui; j + uj; i)ui; j − 2
3 D

2

(16)
D= uk; k

The eddy viscosity is obtained from the Prandtl–Kolmogorov relation

�t =
C�f�q2

!
(17)

The wall damping term, which accounts for the damping e�ect of solid walls, is given by

f=1− e−0:022R; R=
�qy
�

(18)

where y is the distance from the nearest solid wall. The model constants used in this paper
are the same as given in Reference [9]

C� =0:09; Cq1 = 0:5; C!1 = 0:5f + 0:055
(19)

C!2 = 0:833; C!3 = 2=3; �q=0:8; �!=2:0

One of the advantages in using the q–! model over other two-equation models is its numerical
robustness. Unlike the k–� model, the source terms is bounded near the solid wall. Also, it
is known that the q–! model is insensitive to the free-stream turbulent quantities and the
initial condition. Due to the robustness of the q–! model, all the computational results shown
in this paper are obtained from uniform initial conditions. However, it is found to be often
necessary to ramp up the CFL number over the period of a couple of hundreds iterations in
order to suppress the non-linear instabilities at the beginning of the computations.
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3. DISCRETIZATIONS

3.1. Spatial discretization

We will present the numerical methods and the stability analysis in a two-dimensional set-
up for convenience. They are equally applicable to three-dimensional problems as well. The
integral form of the Navier–Stokes equations in two-dimension can be written as

@
@t

∫
�
Q dV +

∮
��
F̃ · n̂ dS=

∮
��
F̃v · n̂ dS +

∫
�
Sq! dV (20)

where the conservative vector Q, the inviscid �ux vector F, the viscous �ux vector Fv, and
the source term vector Sq!, are de�ned by

Q=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

�u

�v

e
�q

�!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; F= F̃ · n̂=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�un

�unu+ pnx

�unv+ pny

(e+ p)un
�unq

�un!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; Fv= F̃v · n̂=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

nx�xx + ny�xy

nx�yx + ny�yy

n̂ · �̃
kqn̂ · ∇q
k!n̂ · ∇!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; Sq!=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

Hq

H!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(21)

Here un is the normal velocity component to the boundary of the control volume, and the
vector �̃ is de�ned by

un= n̂ · ṽ= nxu+ nyv; �̃= n̂ · ˜̃T+ kT∇T (22)

where ˜̃T is the stress tensor.
If we integrate Equations (20) over a quadrilateral control volume, we have

V
@Q
@t
+
∑
F�S=

∑
Fv�S + VSq! (23)

where V and �S are the area of a quadrilateral cell, and length of the cell edges. In order
to integrate Equation (23) numerically, the inviscid �ux is replaced by Roe’s numerical �ux

F̂i+1=2 = 1
2{F(QR) + F(QL)− |K|(QR −QL)} (24)

where K is the Jacobian matrix of the �ux vector F. MUSCL extrapolation for QL and QR

is used for higher spatial accuracy. We use Van Albada’s limiter to maintain total variation
diminishing (TVD) property near sharp solution gradient region

QR|i−1=2 =Qi − s�
4

{(1 + s	)�− + (1− s	)�+}
(25)

QL|i+1=2 =Qi + s�4 {(1− s	)�− + (1 + s	)�+}
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�+ =Qi+1 −Qi;
�−=Qi −Qi−1;

s=
2�+�− + �
�2
+�2− + �

(26)

where � is a small number to prevent singularity. All the computations presented in this paper
were done with 	=1=3, and �=10−8. The dissipation term of Equation (24) can be written
compactly as

|K|(QR −QL) =
(
��− �p

c2

)
|
′
1|P1 + �|
′

1|P2

+
�
2c

(
�p
�c
+ �un

)
|
′
3|P3 +

�
2c

(
�p
�c

− �un
)

|
′
4|P4 (27)

where

P1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

u

v

�Q

q

!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; P2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

�u− nx�un
�v− ny�un
� �Q − un�un

�q

�!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; P3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

u+ nxc

v+ nyc

h+ unc
q

!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; P4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

u− nxc
v− nyc
h− unc
q

!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

and

�Q= 1
2(u

2 + v2) + C�q2; � �Q= u�u+ v�v+ 2C�q�q (29)

The eigenvalues, 
i of the inviscid Jacobian matrix are given in Appendix A, and they are
modi�ed to enforce the entropy condition

|
′|=

⎧⎪⎨
⎪⎩

|
| if |
|¿ �
1
2

( |
|2
�
+ �
)

if |
|¡�
(30)

We use �=0:25 for all the computations in the paper.
The derivatives at half-node points needed for evaluating the viscous terms can be computed

by applying the gradient theorem over an auxiliary cell depicted in Figure 1

∇�≈ 1
V

∮
��
�n̂ dS (31)

This is equivalent to a familiar central di�erence formula, which uses 9-point compact stencil
in two dimension and 27-point compact stencil in three dimension for the viscous terms.
Because the auxiliary cell consists of the halves of neighbouring cells, the area and the
normal vectors of the auxiliary cell can be computed directly from those of neighbouring
computational cells. For instance, the area of the auxiliary cell is computed by averaging the
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i+1,j ,k
i , j ,k

i+1/2,j ,k

Figure 1. Auxiliary cell for derivatives at i + 1=2 point.

areas of the neighbouring two cells. Since in three-dimensional problems the volume of a
computational cell is usually computed by summing the volumes of six tetrahedra which the
computational cell is divided into, this approach gives big savings in CPU time. Also, we do
not need nine variables per auxiliary cell needed for the storage of the normal vectors for
three-dimensional problems.

3.2. Time stepping methods

We use the approximated factorization-alternate direction implicit (AF-ADI) method for the
time stepping method. First, we consider the AF-ADI scheme for the strongly coupled method.
The operator form of the AF-ADI scheme is found to be

LiP−1Lj�Q= −�tR (32)

where the factored operators and the residual vector are

Li =

[
P+

�t
V

{(
@F̃i+1=2
@Qi+1

+
@F̃i+1=2
@Qi

)
�Si+1=2 −

(
@F̃i−1=2
@Qi

+
@F̃i−1=2
@Qi−1

)
�Si−1=2

}]

(33)

Lj =

[
P+

�t
V

{(
@F̃j+1=2
@Qj+1

+
@F̃j+1=2
@Qj

)
�Sj+1=2 −

(
@F̃j−1=2
@Qj

+
@F̃j−1=2
@Qj−1

)
�Sj−1=2

}]

R =
1
V
[(F̃�S)i+1=2 − (F̃�S)i−1=2 + (F̃�S)j+1=2 − (F̃�S)j−1=2]− Sq! (34)
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Here, we have used the following symbols to avoid a lengthy mathematical formula:

F̃= F̂− Fv; P= I −�tD; D=
@Sq!
@Q

(35)

The derivatives of Roe’s �ux with respect to the solution vector are approximated by the
following equations in order to reduce computational e�orts:

@F̂i+1=2
@Qi+1

= 1
2(Ki+1 − |K|)∼= 1

2(Ki+1 − |�(K)|I)
(36)

@F̂i+1=2
@Qi

= 1
2(Ki + |K|)∼= 1

2(Ki + |�(K)|I)

where �(K) is the spectral radius of K.
The �rst-order spatial discretization for the inviscid Jacobian terms was used for the implicit

operators, which results in the system of block tri-diagonal matrices. These block tri-diagonal
matrix systems can be easily solved with the Thomas algorithm. For better stability, only the
turbulent destruction terms in the source terms are treated implicitly as done in Reference [3].
This makes the implicit operators diagonally dominant, resulting in more stable scheme. The
Jacobian matrices of the �ux vectors, the complete source terms and the turbulent destruction
term in the source term are given in Appendix A.
According to Jongen and Marx [11], the strongly coupled method and the loosely coupled

method may not be positive preserving due to the factorization error. However, the experiences
indicate that the instability caused by the lack of the positivity usually occurs at the beginning
of the computations. As stated earlier, the instability can be avoided if we increase the CFL
number over a couple of hundred iterations at the beginning of the computations.
For the strongly coupled method, the Navier–Stokes equations and the q–! turbulence model

equations are solved simultaneously. Thus, 6× 6 block tri-diagonal matrix system needs to be
solved in order to update the solutions for two-dimensional problems. For the loosely coupled
method, however, the Navier–Stokes equations are solved �rst with the turbulent viscosity
�xed. Subsequently, the q–! turbulence model equations are solved with the updated �ow
variables. Finally, the turbulent viscosity is updated with the Prandtl–Kolmogorov relation.
Therefore, 4× 4 block tri-diagonal matrix system and 2× 2 block tri-diagonal matrix system
have to be solved in order to update the solutions. Since it takes longer to solve a 6× 6 block
tri-diagonal matrix system than two smaller block tri-diagonal matrix systems, the CPU time
of the strongly coupled method is usually larger than that of the loosely coupled method.
The �rst step of the loosely coupled method is given by

Lnsi L
ns
j �Q

ns = −�tRns (37)

where the solution vector is Qns = [� �u �v e]T, Rns is the residual vector of the Navier–
Stokes equations that consists of the �rst four elements of Equation (34), and the implicit
operators, Lnsi and Lnsj are similar to those in Equation (33). The solution vector of the
q–! turbulence model equations Qq!=[�q �!]T can be updated by evaluating the following

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:165–197



174 S. LEE AND D. W. CHOI

equations:

Lq!i P
−1
q! L

q!
j �Q

q!= −�tRq! (38)

where Rq! is evaluated with the updated Qns.
Even though both coupling methods when used with the AF-ADI method are unconditionally

stable according to the linear von Neumann stability analysis, the nonlinear stability behaviour
of the scheme as well as the factorization error associated with the AF-ADI method could
limit the time step in real applications. The time step is estimated from the following formula:

�t=
�ti�tj
�ti +�tj

(39)

where

1
�ti

=
|�(K)|
CFL

�S
V
+
�(Kv)
VN

(
�S
V

)2
(40)

The expression for �tj assumes the similar form. Here, CFL is the Courant–Friedrichs–Lewy
number and VN is the von Neuman number. The local time stepping strategy is adopted for
better convergence. The spectral radii of the inviscid and viscous Jacobian matrices are given
in Appendix A. Since VN is relevant for di�usion problems, it is often possible to use a large
value of VN for external �ows where convection is dominant.

3.3. Boundary conditions

The explicit treatment of the boundary conditions is widely used because of its simplicity.
In the present study, the boundary conditions are applied explicitly and comparisons of the
convergence characteristics of the two coupling methods are made. We note, however, it may
change the stability of the present implicit numerical method. Two types of wall boundary
conditions for the turbulence model equations are used. If the turbulence model equations
are integrated to the wall, we use the non-slip boundary conditions for the mean �ow. The
turbulent velocity scale is set to zero at the wall, while the normal gradient of the speci�c
dissipation rate is set to zero at the wall

q=0;
@!
@n
=0 (41)

If the wall function is used, the slip wall boundary condition is used. The amount of slip is
determined to give the same value of wall shear stress computed from the wall function as
described in References [12, 13]. The turbulent velocity scale and the speci�c dissipation rate
are evaluated with the following equations:

q=
u�
C1=4�

; !=

√
C�u�
kvy

(42)

where u� is the friction velocity which is determined from the wall function, and kv is the
von Karman constant of 0.41. We use the standard boundary conditions for the in�ow and
exit boundaries, which can be found in References [5, 10].
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4. VON NEUMANN STABILITY ANALYSIS

4.1. Strongly coupled method

We will consider the stability of the strongly coupled method and the loosely coupled method
applied to two-dimensional problems with the AF-ADI scheme. This procedure can be applied
to three-dimensional problems in the same manner. The linearized system of the Navier–
Stokes equations and the q–! turbulence model equations in the Cartesian coordinates, can be
written as

@Q
@t
+A

@Q
@x
+ B

@Q
@y
=Cxx

@2Q
@x2

+Cyy
@2Q
@y2

+Cxy
@2Q
@x@y

+DQ (43)

The inviscid Jacobian matrices appeared in Equation (43) are given by

A =

⎡
⎣Ans Au

Ad Aq!

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

(�− 1) �Q − u2 (3− �)u (1− �)v �− 1 −2C�(�− 1)q 0

−uv v u 0 0 0

{(�− 1) �Q − h}u h− (�− 1)u2 (1− �)uv �u −2C�(�− 1)uq 0

−uq q 0 0 u 0

−u! ! 0 0 0 u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(44)

B =

⎡
⎣Bns Bu

Bd Bq!

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0

−uv v u 0 0 0

(�− 1) �Q − v2 (1− �)u (3− �)v �− 1 −2C�(�− 1)q 0

{(�− 1) �Q − h}v (1− �)uv h− (�− 1)v2 �v −2C�(�− 1)vq 0

−vq 0 q 0 v 0

−v! 0 ! 0 0 v

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(45)
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while the viscous Jacobian matrices are given by

Cxx =

⎡
⎣Cnsxx Cuxx

Cdxx Cq!xx

⎤
⎦

=
1
�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

−4�T
3
u

4�T
3

0 0 0 0

−�Tv 0 �T 0 0 0

k1

(
4
3
�T − k0kT

)
u (�T − k0kT )v k0kT −2k0kT �q 0

−kqq 0 0 0 kq 0

−k!! 0 0 0 0 k!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(46)

Cyy =

⎡
⎣Cnsyy Cuyy

Cdyy Cq!yy

⎤
⎦

=
1
�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

−�Tu �T 0 0 0 0

−4�T
3
v 0

4�T
3

0 0 0

k1 (�T − k0kT )u
(
4
3
�T − k0kT

)
v k0kT −2k0kT �q 0

−kqq 0 0 0 kq 0

−k!! 0 0 0 0 k!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(47)

The Jacobian matrix for cross derivative term is found to be

Cxy =

[
Cnsxy Cuxy

0 0

]

=
1
�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

−�T
3
v 0

�T
3

0 0 0

−�T
3
u

�T
3

0 0 0 0

k3
�T
3
u− 2k0kT v �T

3
v− 2k0kTu 2k0kT −2k0kT �q 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(48)
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where the constants appeared in the above equations are

k0 = �− 1; k4 = 2q2 + u2 + v2 − e
�
; k1 = k0k4kT − �T ( 43 u2 + v2)

(49)
k2 = k0k4kT − �T (u2 + 4

3 v
2); k3 = 2k0k4kT − 2

3 �Tuv

The �nal discretized form of the linearized Navier–Stokes equations and the q–! turbulence
model equations for the strongly coupled method can be written as

LiP−1Lj�Q= −�tR (50)

where the implicit operators are

Li=
{
P+�t

(
A
@
@x

−Cxx @
2

@x2

)}
; Lj=

{
P+�t

(
B
@
@y

−Cyy @
2

@y2

)}
(51)

and the residual vector is

R=
[
Rns

Rq!

]
=A

@Q
@x
+ B

@Q
@y

−Cxx @
2Q
@x2

−Cyy @
2Q
@y2

−Cxy @
2Q
@x@y

−DQ (52)

By substituting Q= �Q(t)eî(i�x+j�y) into Equation (50), we can obtain the ampli�cation matrix
of the discretized equations with the de�nition of the ampli�cation matrix, �Q(t+�t)=G �Q(t).
Here, �x, �y are related with the wavenumbers through �x= kx�x, �y= ky�y. Also, i, j are
the grid index in x and y coordinates, respectively and î=

√−1. The ampli�cation factor of
the AF-ADI scheme with the strongly coupled method is found to be

g=�(G)=�(K−1
1 K2) (53)

where

K1 =P+W+�t
[
î
(
A
�x

sx +
B
�y

sy

)
+
( |A|
�x

+
2Cxx
�x2

)
Cx +

( |B|
�y

+
2Cyy
�y2

)
Cy

]
(54)

K2 =P+W+�t
[
î
(
A
�x

fx +
B
�y

fy

)
+

|A|
�x

gx +
|B|
�y

gy − Cxy
�x�y

sxsy

]

Here the factorization error is given by

W=�t2
{
îA
�x

sx +
( |A|
�x

+
2Cxx
�x2

)
Cx

}{
îB
�y

sy +
( |B|
�y

+
2Cyy
�y2

)
Cy

}
(55)

The coe�cients in Equations (54) and (55) are

fx = �
1− 	
4
(s2x − 2sx); gx=�

{
1− 	
4
(C2x − 2Cx) + 1 + 	2 Cx

}
(56)

sx = sin �x; Cx=1− cos �x; s2x= sin 2�x; C2x=1− cos 2�x

and fy, gy, sx, s2x, Cx, and C2x take the similar form.
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4.2. Loosely coupled method

We follow Lee and Dulikravich’s approach to study the stability of the loosely coupled method
with the AF-ADI scheme. First, we de�ne the composite solution vector, Qc by

Qc=
[
Qns

Qq!

]
(57)

The �rst four components of the composite solution vector are from the Navier–Stokes equa-
tions while the last two components are from the q–! turbulence model equations. Then the
two-step method can be written as

L(1)i L
(1)
j �Q

(1)
c =−�tR(1)

(58)
L(2)i P

−1L(2)j �Q
(2)
c =−�tR(2)

where the corrections are de�ned by

�Q(1)
c =Q

∗
c −Qn

c ; �Q(2)
c =Q

n+1
c −Q∗

c (59)

Here Q∗
c is the intermediate solution vector. The implicit operators of the �rst step are

given by

L(1)i =
{
I+�t

(
A(1)

@
@x

−C(1)xx
@2

@x2

)}
; L(1)j =

{
I+�t

(
B(1)

@
@y

−C(1)yy
@2

@y2

)}
(60)

where the Jacobian matrices in the implicit operators are

A(1) =

[
Ans 0

0 I

]
; B(1) =

[
Bns 0

0 I

]

(61)

C(1)xx =

[
Cnsxx 0

0 I

]
; C(1)yy =

[
Cnsyy 0

0 I

]
; R(1) =

[
Rns

0

]

The implicit operators for the second step take the similar form as those of the �rst step. The
di�erence, however, comes from the source term. The implicit operators are found to be

L(2)i =
{
P+�t

(
A(2)

@
@x

−C(2)xx
@2

@x2

)}
; L(2)j =

{
P+�t

(
B(2)

@
@y

−C(2)yy
@2

@y2

)}
(62)

P= I −�t
[
0 0

0 Dq!

]
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Figure 2. Ampli�cation factor contours of the strongly coupled method for M =0:435, Re=1× 107,
v=u=0, �x=0:02, �y=0:001, q=0:1, !=20, �=1.

where the Jacobian matrices are

A(2) =

[
I 0

0 Aq!

]
; B(2) =

[
I 0

0 Bq!

]

(63)

C(2)xx =

[
I 0

0 Cq!xx

]
; C(2)yy =

⎡
⎣I 0

0 Cq!yy

⎤
⎦ ; R(2) =

[
0
Rq!

]

The Jacobian matrices Ans, Bns, etc. are the sub matrices found in Equations (44)–(48). The
ampli�cation factor of the AF-ADI scheme with the loosely coupled method can be calculated
from

g=�(G(1)G(2)) (64)

where G(1) and G(2) are the ampli�cation matrices of the �rst and the second steps, which
are found to be similar to Equations (53)–(55).
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Figure 3. Ampli�cation factor contours of the loosely coupled method for M =0:435, Re=1× 107,
v=u=0, �x=0:02, �y=0:001, q=0:1, !=20, �=1.

4.3. Stability analysis results

FORTRAN programs are developed to analyse the stability characteristics of the strongly
coupled method and the loosely coupled method. Figures 2 and 3 show the stability results
of both methods for the local Mach number and the Reynolds number of 0.435 and 1× 107,
respectively. The �ow angle and the aspect ratio of the computational cell are 0 and 20. The
values of the non-dimensionalized turbulent quantities, q and ! are chosen to be 0.1 and 20.
These correspond to the turbulent viscosity that is 337.5 times as large as the molecular
viscosity. These �ow quantities are chosen from the computational results of the transonic
�ow around an RAE2822 airfoil, which is one of the computational examples. The ratio of
the turbulent kinetic energy to that of free stream is slightly higher than 3.8%, which occurs
at the edge of the boundary layer just aft of the shock where the turbulent kinetic energy is
the highest. CFL=20 and VN =∞ are used to compute the time step. The turbulent kinetic
energy contributions are included in these plots (�=1). Little di�erence can be noticed from
the �gures, indicating almost identical convergence behaviour of both methods. Figures 4
and 5 depict ampli�cation factor contours for �=0. The other conditions are the same as
those used in Figures 2 and 3. As can be seen in the �gures, the stability characteristics of
the strongly coupled method and the loosely coupled method are identical if the turbulent
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Figure 4. Ampli�cation factor contours of the strongly coupled method for M =0:435, Re=1× 107,
v=u=0, �x=0:02, �y=0:001, q=0:1, !=20, �=0.

kinetic energy contributions to the momentum equations and the state equation are ignored.
The identical stability characteristics can be deduced from the characteristics of the Jacobian
matrices involved in the implicit operators. We will discuss it further in the next section. In
Figures 6 and 7, the contours of constant ampli�cation factors of both coupling methods with
�=1 are presented when the kinetic energy is 25 times higher than the previous case. Even
with such high values of kinetic energy, the �gures show the stability characteristics of both
methods are very similar.

4.4. Stability of both coupling methods with �=0

In this section, we will show that the stability characteristics of the strongly coupled method
and the loosely coupled method are identical when �=0. First, we de�ne a matrix of L-type as

L=

[
C 0

D E

]
(65)
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Figure 5. Ampli�cation factor contours of the loosely coupled method for M =0:435, Re=1× 107,
v=u=0, �x=0:02, �y=0:001, q=0:1, !=20, �=0.

Then, this L-type matrix has the following properties:

1. Multiplication of two L-type matrices results in an L-type matrix, and the diagonal
blocks of the resulting L-type matrices are the products of the diagonal blocks of the
two matrices.

[
C 0

D E

][
F 0

G H

]
=

[
CF 0

DF+ EG EH

]
(66)

2. Inverse of an L-type matrix is also an L-type matrix, and the diagonal blocks of the
inverse matrix are the inverse of the diagonal blocks.

[
C 0

D E

]−1

=

⎡
⎣ C−1 0

−E−1DC−1 E−1

⎤
⎦ (67)
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Figure 6. Ampli�cation factor contours of the strongly coupled method for M =0:418, Re=1× 107,
v=u=0, �x=0:02, �y=0:001, q=0:5, !=20, �=1.

3. Eigenvalues of an L-type matrix consist of the eigenvalues of diagonal blocks of the
matrix. The proof of the property can be found in Reference [14].

For �=0, we know that the matrices, A, B, |A|, |B|, Cxx, Cxy, Cyy, and P for both methods
are all L-type matrices. Therefore, the �rst diagonal block of G in Equation (53) is the same
as the corresponding diagonal block of G(1) in Equation (64), while the second diagonal block
of G in Equation (53) is the same as the second diagonal block of G(2) in Equation (64). We
can conclude that from properties 1 and 2 the diagonal blocks of the ampli�cation matrices of
the strongly coupled method and the loosely coupled method are the same unless we change
the sweep directions. Furthermore, they are L-type matrices. The ampli�cation factors of both
methods are the same due to property 3. The stability analysis of this section suggests that
when the computational study on the chemical reaction or the real gas e�ects is considered,
the species concentration equations and the continuity equation can be solved separately from
the momentum and energy equations without loss of stability characteristics. However, the
correct numerical method for the source terms has to be devised and applied in order to use
the loosely coupled method e�ciently.
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Figure 7. Ampli�cation factor contours of the loosely coupled method for M =0:418, Re=1× 107,
v=u=0, �x=0:02, �y=0:001, q=0:5, !=20, �=1.

5. COMPUTATIONAL RESULTS

5.1. Transonic �ow over RAE2882 airfoil

In order to con�rm the results of stability analysis, transonic �ows over the RAE2822 airfoil
were computed with both coupling methods. The experimental data were reported by Cook
et al. [15]. Computational results of the case 9 are presented here. The free-stream Mach num-
ber, the Reynolds number based on chord length, and the angle of attack are 0.73, 6:5× 106
and 3:19◦, respectively. A C-type grid of 297× 65 is used and the number of cells on the
airfoil surface is 200. Figure 8 shows the close-up view of the grid. The largest value of y+

at the centre of the �rst cell o� the wall is 32, which is well within the logarithmic region.
We use the wall function to specify the boundary condition on the solid wall for this case.
The surface pressure coe�cients and the skin friction coe�cients of the solvers are compared
in Figures 9 and 10 with the experimental results, showing good agreement. While the cou-
pling methods do not alter the results, the inclusion of the turbulent kinetic energy makes
a slight change in the surface pressure and the skin friction coe�cients distribution. All the
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Figure 8. Close-up view of the grid used for the computation of �ow around RAE 2822 airfoil.
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Figure 9. Comparison of the surface pressure coe�cient distributions for transonic �ow around RAE2822
airfoil at M =0:73, Re=6:5× 106, 
=3:19◦ (wall function).
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Figure 10. Comparison of the skin friction coe�cient distributions for transonic �ow around RAE2822
airfoil at M =0:73, Re=6:5× 106, 
=3:19◦ (wall function).

results were obtained with CFL=20 and VN =∞. The convergence histories of both coupling
methods are compared in Figure 11. In the �gure, the RMS values of the residuals of the
density and the turbulence quantities are presented. The overall convergence behaviours of
both coupling methods are identical for either value of �. The slight di�erence shown in the
convergence histories comes from the inclusion of the turbulent kinetic energy contribution,
not from the di�erence of the coupling method used to solve the governing equations. As
can be seen in the �gure, the residuals of the Navier–Stokes equations as well as the tur-
bulence model equations converge to machine zero within 5000 iterations for both coupling
methods. The CPU time per cell per iteration for the strongly coupled method and the loosely
coupled method are 35.6 and 20:7 �s, respectively. We used one CPU of a 12-node cluster
(dual 2:4GHz Intel Xeon processors) for this example. As stated earlier, the strongly coupled
method takes longer to run than the loosely coupled method.
Figures 12 and 13 present the surface pressure coe�cient and the skin friction coe�cient

of the RAE2822 airfoil with the same �ow conditions as the previous case. In this example,
we integrate the turbulence model equations to the wall. A C-type grid of 297× 85 is used
and the grid lines are more clustered toward the wall comparing with the grid used in the
previous computation. The �rst cell centre points o� the wall surface are located within 1.73
of y+. The surface pressure coe�cient and the skin friction coe�cient are compared with the
experimental data. The skin friction coe�cient distribution indicates that the q–! turbulence
model can simulate the transition to turbulent �ow. Figure 14 shows the comparison of the
convergence behaviour of both coupling methods indicating a slower convergence than that
of the previous results due to the highly clustered grid. However, after 6000 iterations the
convergence exhibits a linear behaviour. The coupling methods do not change the convergence
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Figure 11. Comparison of the convergence histories of the strongly and the loosely coupled methods
for transonic �ow around RAE2822 airfoil at M =0:73, Re=6:5× 106, 
=3:19◦ (wall function).

characteristics as in the previous case. The CFL number of 5 is used and the von Neumann
number is not considered in determining the time step.

5.2. Mesh size e�ects

In order to see the mesh size e�ects on the convergence of both coupling strategies, three
C-type grids of 231× 56, 297× 65, and 375× 71 are used for the transonic �ow over the
RAE2822 airfoil. The wall function is used in this study. The performance of both coupling
methods with �=0 and 1 is compared in Table I. The number of iterations given in the
table is the value when the initial residual is reduced by 10 orders of magnitude. As can
be seen in the table, the choice of the coupling methods does not change the convergence
behaviour of the scheme. Also, the CPU time per cell per iteration is included in the table for
comparison.

5.3. Transonic �ow over ONERA M-6 Wing

As the second example, a transonic turbulent �ow over the ONERA M-6 is computed with
both the strongly coupled method and the loosely coupled method. The wall function approach
is used to specify the solid wall boundary condition on the wing surface. The entire computa-
tional domain is subdivided into four blocks, and each block is discretized with 97× 33× 27
grid. The wing surface is modeled with a surface patch of 129× 34. The chord-wise pres-
sure distributions at six span locations are compared with the experimental data by Schmitt
and Charpin [16] in Figure 15. Since both coupling methods for either value of � give
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Figure 12. Comparison of the surface pressure coe�cient distributions for transonic �ow around
RAE2822 airfoil at M =0:73, Re=6:5× 106, 
=3:19◦ (without wall function).
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Figure 13. Comparison of the skin friction coe�cient distributions for transonic �ow around RAE2822
airfoil at M =0:73, Re=6:5× 106, 
=3:19◦ (without wall function).
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Figure 14. Comparison of the convergence histories of the strongly and the loosely coupled methods for
transonic �ow around RAE2822 airfoil at M =0:73, Re=6:5× 106, 
=3:19◦ (without wall function).

Table I. Mesh size e�ects on the convergence of the coupling methods.

Strongly coupled method Loosely coupled method

Grid size �=0 �=1 CPU (�s)∗ �=0 �=1 CPU (�s)∗

231× 56 3344 3433 33.1 3344 3436 19.6
297× 65 3482 3470 35.6 3482 3472 20.7
375× 71 3857 4068 37.2 3855 4072 20.7

∗With one CPU of 12-node cluster (dual 2:4 GHz Intel Xeon processors).

indiscernible pressure coe�cients, only the results from the strongly coupled method for �=1
are presented and compared with the experimental results. The �gure indicates the computed
surface pressure coe�cients agree well with the experimental data. Both the computational
results and the experimental results exhibit the formation of a lambda shock due to a merge
of a leading edge shock and a trailing edge shock. In Figure 16, the convergence histories
of the solvers are compared with each other. Again, no signi�cant di�erence in convergence
histories is noticed. All the computations for this case are done with CFL=5, VN =5. Al-
most 5 order of reduction in the residuals is obtained in 3000 iterations. The CPU time per
cell per iteration for this example is 68:5 �s for the strongly coupled method and 45:6 �s for
the loosely coupled method. We used four CPUs for this computation. The loosely coupled
method runs about one and half times faster than the strongly coupled method.
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Figure 15. Surface pressure coe�cient distributions of transonic �ow around ONERA
M-6 Wing at M =0:84, Re=11:72× 106, 
=3:06◦.

5.4. Flow over RAE wing body

Figure 17 depicts the surface grid of the RAE wing body for the next computational example.
Treadgold et al. [17] measured the surface pressure distributions not only on the wing but on
the body using an 8 ft× 6 ft transonic wind tunnel. The computational domain is discretized
with a six block grid system. The sizes of each blocks are 71× 41× 55. In this example, we
integrated the turbulence equations to the wall to see the grid clustering e�ects on the con-
vergence for three-dimensional problems. In Figure 18, the pressure coe�cient distributions
on the fuselage along the constant circumferential angles of ±15, ±30, ±45 and ±75◦ are
compared with the experimental data. The circumferential angle is measured from the wing
surface and the positive angles indicate the upper fuselage. Slight di�erences in the surface
pressure coe�cients at �= ±75◦ can be seen. Otherwise, the computed results indicate good
agreement with the experimental data. The surface pressure coe�cient distributions at seven
span locations on the wing surface are compared in Figure 19, showing excellent agreement
with the experimental results. Since the results from the two solvers are identical, we presented
the results from the strongly coupled method with �=1 only. In Figure 20, the convergence
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Figure 16. Comparison of the convergence histories of the strongly and the loosely coupled methods
for transonic �ow over ONERA M-6 Wing at M =0:84, Re=11:72× 106, 
=3:06◦.

Figure 17. A surface grid of RAE wing body problem.

histories of both coupling methods are presented. As in the previous cases, the convergence
characteristics of both coupling methods are almost identical for either value of �, showing
that the coupling methods do not change the convergence behaviour. The CFL number and
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Figure 18. Surface pressure coe�cient distributions on the body of RAE wing body at M =0:8,
Re=1:0× 106, 
=2◦: (a) � = ±15◦; (b) � = ±30◦; (c) � = ±45◦; and (d) � = ±75◦.

VN used in this computation are 5 and 0.5, respectively. The CPU time per cell per iteration
with six CPUs is 85:3�s for the strongly coupled method and 49:4�s for the loosely coupled
method.

6. CONCLUDING REMARKS

The loosely coupled method and the strongly coupled method for the Navier–Stokes equations
and the q–! turbulence model equations are developed and applied to a number of computa-
tional examples including two- and three-dimensional problems. The methods use the AF-ADI
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Figure 19. Surface pressure coe�cient distributions on the wing of RAE
wing body at M =0:8, Re=1:0× 106, 
=2◦.

method for time integration, and Roe’s approximate Riemann solver for the spatial discretiza-
tion. Also, the e�ect of the turbulent kinetic energy contributions to the state equation and to
the energy equation on the stability behaviour is considered. Von Neumann analysis and the
numerical computations show that the stability characteristics of both coupling methods are
identical when the turbulent kinetic energy contribution is ignored, and that the e�ects of the
turbulent kinetic energy contribution on the stability characteristics in both coupling methods
are negligible.

APPENDIX A

The inviscid Jacobian matrix of the coupled system is given by

K=
@F
@Q

=

⎡
⎣Kns Ku

Kd Kq!

⎤
⎦
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 nx ny 0 0 0

(�− 1)nx �Q − unu un − (�− 2)nxu nyu− (�− 1)nxv (�− 1)nx �nx 0

(�− 1)ny �Q − unv nxv− (�− 1)nyu un − (�− 2)nyv (�− 1)ny �ny 0{
2(�− 1)− �e

�

}
un hnx − (�− 1)unu hny − (�− 1)unv �un �un 0

qun nxq nyq 0 un 0

!un nx! ny! 0 0 un

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A1)

where �= − 2C(�− 1)�q.
Here the eigenvalues of the inviscid Jacobian matrix are found to be

�=diag{un un un + c un − c | un un} (A2)

where the speed of sound is de�ned by c=
√
�(R+ � 23 (k=T ))T . The �rst four eigenvalues

are originated from the Navier–Stokes equations, while the latter two come from the q–!
turbulence model equations.
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Figure 20. Comparison of the convergence histories of the strongly and the loosely coupled methods
for �ow over the RAE wing body at M =0:8, Re=1:0× 106, 
=2◦.
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The viscous Jacobian matrix can be found via the chain rule,

@Fv
@Qi+1

∣∣∣∣
i+1=2

=
@Fv
@Qx

@Qx

@Qi+1
+
@Fv
@Qy

@Qy

@Qi+1

∣∣∣∣
i+1=2

(A3)

The terms like @Fv=@Qx and @Fv=@Qy are independent of the discretization scheme and can
be found from Reference [4]. On the other hand, @Qx=@Qi+1|i+1=2 and @Qy=@Qi+1|i+1=2 can
be obtained by directly di�erentiating the �nite volume approximation of Equation (31). The
resulting viscous Jacobian can be written as

Kv =
@Fv
@Q

=

⎡
⎣Knsv Kuv

Kdv Kq!v

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

−�T
�
(
11u− 
21v) �T

�

11 −�T

�

21 0 0 0

�T
�
(
12u− 
22v) −�T

�

12

�T
�

22 0 0 0

a41 a42 a43 a44 a45 0

−kq
0
�
q 0 0 0

kq
0
�

0

−k!
0
�
! 0 0 0 0

k!
0
�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A4)

where

a41 =−a42u− a43v− a44 e� − a45q; a42 = (a22 − a44)u+ a32v

a43 = a23u+ (a33 − a44)v; a44 =
(�− 1)
0kT

�
; a45 = − 2a44q�

The coe�cients in the above equations depend on the geometry of computational cell, and
are given by


0 =
�s2

V
; 
11 =

�S2

V

(
4
3
n2x + n

2
y

)
; 
22 =

�S2

V

(
n2x +

4
3
n2y

)
;

(A5)


12 = a21 = − �S2

3V
nxny

The eigenvalues of the viscous Jacobian matrix are found to be

�v=
�S2

V
diag

{
0
�T
�

4�T
3�

�kT
�Cp

kq
�
k!
�

}
(A6)
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The Jacobian matrix for the source terms are found to be as

D =
@Sq!
@Q

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Cq1

(
�tS
q
+!q

)
0 0 0 Cq1

(
�tS
q2

− 2D
3

−!
)

−Cq1
(
�tS
q!

+ q
)

C!1C�S + C!2!2 0 0 0 0 −C!1C!3D − 2C!2!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A7)

However, as noted in the numerical method section, only destruction terms are treated
implicitly. Then the Jacobian matrix for the source terms becomes

D=
@Sq!
@Q

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Cq1!q 0 0 0 −Cq1! −Cq1q
C!2!2 0 0 0 0 −2C!2!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A8)
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